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ABSTRACT

BACKGROUND Coronary artery disease (CAD) polygenic risk scores (PRS) may identify individuals at elevated genetic 
risk “flying under the radar” in contemporary practice. The aims of the PROACT (Polygenic Risk Based Detection and 
Treatment of Subclinical Coronary Atherosclerosis) trials are to prospectively identify these individuals, quantify sub-
clinical coronary plaque, and slow its progression with pharmacologic interventions.

OBJECTIVES The aim of this study is to report interim feasibility and implementation findings from PROACT, a 
genotype-first, biobank-enabled trial, characterizing eligibility yield, callback engagement, and subclinical coronary 
atherosclerosis on coronary computed tomographic angiography among individuals with high CAD PRS.

METHODS Within a hospital-based biobank, adults 40 to 75 years of age with high CAD PRS, without cardiovascular 
disease, and not on lipid-lowering therapy were invited. The authors characterize 2,495 eligible individuals with high 
CAD PRS, report on the feasibility and early operational outcomes of a genotype-first callback strategy for a clinical trial 
in the first 1,314 invited, and describe plaque prevalence by age and sex in the first 204 participants using coronary 
computed tomographic angiography.

RESULTS Among 64,092 genotyped participants, 2,495 (3.9%) were eligible and had high CAD PRS despite low 

clinical risk (median 10-year pooled cohort equations risk for atherosclerotic cardiovascular disease 3%; Q1-Q3: 1%-8%). 
Recruitment showed high engagement: among 1,314 invited individuals, 283 (21.5%) opted in, and 204 (15.5%) 
completed baseline imaging. Compared with participants who did not opt in, those who opted in had higher specialty 
care engagement and lived closer to the study site. Analysis of the first 204 participants enrolled by January 31, 2025 
(mean age 56.3 ± 8.5 years, 69% women), showed that despite the low clinical risk and favorable cardiovascular health 
(mean Life’s Essential 8 score 73.3 ± 11.5 vs the U.S. average of ∼65), one-half the participants (102 of 204) had 
subclinical plaque. Subclinical plaque prevalence was 76.2% in men and 38.3% in women and was high across age 
groups.

CONCLUSIONS These exploratory findings highlight the feasibility of implementing genotype-first recruitment for 
prevention trials and reveal a large proportion of “silent” high–genetic risk individuals with subclinical plaque for whom 

pharmacotherapy could be beneficial but who remain undetected by standard clinical assessments. (Polygenic Risk Based 
Detection of Subclinical Coronary Atherosclerosis and Change in Cardiovascular Health [PROACT 1], NCT05819814; 
Polygenic Risk Based Detection of Subclinical Coronary Atherosclerosis and Intervention With Statin and Colchicine 
[PROACT 2], NCT05850091) (JACC. 2026;■:■–■) © 2026 by the American College of Cardiology Foundation.
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C onventional clinical risk factor– 
based models leave a critical blind 
spot in coronary artery disease 

(CAD) prevention, failing to detect individ-
uals at high genetic risk who might silently 
develop subclinical atherosclerosis. 1-5 

Most acute coronary events occur among 
individuals classified as low to intermediate 
risk according to the pooled cohort equations 
(PCE), highlighting an important gap in our 
current approach to prevention. 6 This un-
derestimation is particularly pronounced 
among younger adults and women, whose 
clinical risk profiles might remain “normal” 
until advanced disease stages. 7-12 Current 
guidelines do not routinely recommend 
preventive medications among seemingly 
healthy individuals. This leaves significant 
numbers of at-risk individuals “flying under 
the radar” during a critical window when 
early initiation of prevention is important, 
given the cumulative nature of most risk 
factors such as “cholesterol-years.” 6,13 

CAD polygenic risk scores (PRS) quantify 
genetic susceptibility to CAD and serve as a 

single lifelong metric that could identify about 20% 

of the population at 3-fold increased risk. 14,15 Anal-
ysis of large retrospective data made the case for the 
potential clinical utility of CAD PRS on the basis of 
their ability to identify people at high genetic risk but 
who fall under the clinical risk thresholds in prac-
tice. 1,16-19 Post hoc analyses of clinical trials also 
demonstrated that individuals with high CAD PRS 
derive a disproportionately higher benefit from lipid-
lowering therapy, highlighting the value of CAD PRS 
in enriching clinical trials. 20-24 Early studies also 
suggest that disclosure of CAD PRS can have a posi-
tive impact on care, such as improved medication 
adherence and control of low-density lipoprotein 
cholesterol (LDL-C). 25-27 However, prospective data 
on the feasibility, implementation, and clinical

impact of genome-first prevention strategies in car-
diovascular disease (CVD) remain limited. 28,29

In contrast, oncology has already begun to oper-
ationalize genome-based risk stratification at scale. 
For example, the landmark BARCODE1 (The Use of 
Genetic Profiling to Guide Prostate Cancer Targeted 
Screening) trial invited >40,000 men from primary 
care for prostate cancer screening using a PRS-based 
stratification strategy. 29 Among men in the highest 
genetic risk strata who underwent targeted magnetic 
resonance imaging and biopsy, prostate cancer was 
detected in 40% of participants, with 55% of these 
cancers classified as clinically significant. Notably, 
nearly three-quarters (72%) of these clinically sig-
nificant cancers would have been missed by con-
ventional prostate-specific antigen–based screening 
pathways, underscoring the ability of PRS to identify 
individuals with otherwise silent, high-risk disease. 29 

This landmark trial marked a pivotal moment for 
genome-first cancer prevention, establishing a proof 
of concept for integration of polygenic risk into 
population screening.

Cardiovascular prevention has not yet fully repli-
cated this approach. Realizing the clinical utility of 
CAD PRS will require feasible, pragmatic models for 
identifying, engaging, and phenotyping individuals 
at high genetic risk and integrating genomic infor-
mation into preventive workflows. Coronary 
computed tomographic angiography (CTA) offers a 
complementary tool by enabling early visualization 
of subclinical atherosclerosis. Unlike traditional im-
aging methods such as coronary artery calcium (CAC) 
scoring, which detects only calcifications and 
frequently returns zero in younger adults or those 
with early-stage disease, coronary CTA quantifies 
both calcified and noncalcified plaque. 12,30-33 This 
comprehensive plaque assessment allows earlier 
detection and precise characterization of athero-
sclerotic pathology at stages at which interventions 
are more likely to be effective. 34 Importantly, evi-
dence indicates that plaque progression is a strong
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predictor of cardiovascular events, highlighting a 
critical preventive “window of opportunity” when 
proactive plaque identification and treatment to slow 

progression can prevent future events. 35

Here, we describe the feasibility, implementation, 
and interim findings of the PROACT (Polygenic Risk 
Based Detection and Treatment of Subclinical Coro-
nary Atherosclerosis) clinical trials, which are

designed to operationalize this 2-step paradigm: 
genotype-first risk identification using CAD PRS, 
followed by targeted imaging to detect subclinical 
coronary disease (Central Illustration, Figure 1A). This 
paper presents: 1) a proof-of-concept demonstration 
of the yield from a genomic-enriched primary pre-
vention trial using biobank data; and 2) the preva-
lence and characterization of subclinical coronary

CENTRAL ILLUSTRATION A Genotype-First Strategy Reveals a Large “Silent” High–Genetic 
Risk Population With Subclinical CAD, Creating an Opportunity for Earlier Prevention
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MGB Biobank 
64,092 genotyped
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Age 40-75 years, no known CVD, 

not on lipid-lowering, high CAD PRS

204 underwent CCTA 
Mean age 56 years 

69% women

21.5% success rate of 
biobank call-back 

strategy
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No plaque (PROACT 1)
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With plaque (PROACT 2)

Silent CAD Despite Low Clinical Risk 
and High Cardiovascular Health

Feasible, high-engagement 
genotype-first recruitment Plaque is Prevalent Across Age and Sex

1,314 invited

283 interested

50% have plaque

Low PCE 10-yr ASCVD 
Risk (median 3.7%)

High Life's Essential
8 Score (mean 73.3)

Male Female

Abou-Karam R, et al. JACC. 2026;■(■):■–■.

The PROACT (Polygenic Risk Based Detection and Treatment of Subclinical Coronary Atherosclerosis) trials establish a proof of concept for a 
biobank-enabled, genetically enriched strategy for a primary prevention clinical trial. There were 3.9% eligible, and 21.5% of those invited 
opted in. Among 204 participants who underwent coronary computed tomographic angiography (CTA), despite low clinical risk and 
favorable cardiovascular health, 50% had subclinical plaque, including 76.2% of men and 38.3% of women. These interim findings from 

PROACT highlight a substantial “silent” high-risk population identified using genetics that could qualify for targeted prevention.
ASCVD = atherosclerotic cardiovascular disease; CAD = coronary artery disease; CVD = cardiovascular disease; MGB = Mass General 
Brigham; PCE = pooled cohort equations; PROACT 1 = Polygenic Risk Based Detection of Subclinical Coronary Atherosclerosis and Change in 
Cardiovascular Health; PROACT 2 = Polygenic Risk Based Detection of Subclinical Coronary Atherosclerosis and Intervention With Statin 
and Colchicine; PRS = polygenic risk score.

J A C C V O L . ■ , N O . ■ , 2 0 2 6 Abou-Karam et al
■ , 2 0 2 6 : ■ – ■ PROACT: Polygenic Risk Guided CAD Prevention

3



FIGURE 1 PROACT Framework and Study Design for Genomic-Guided Cardiovascular Prevention
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Conceptual Framework for Proactive Cardiovascular Prevention

(A) Contemporary cardiovascular prevention begins only after the emergence of clinical risk factors. We propose a more proactive approach whereby polygenic and 
clinical risk enrichment can guide subclinical plaque detection and treatment. (B) Participants with high coronary artery disease (CAD) polygenic risk scores (PRS) 
undergo coronary computed tomographic angiography (CTA) and are randomized according to plaque presence into 2 parallel trials. PROACT 1 (Polygenic Risk Based 
Detection of Subclinical Coronary Atherosclerosis and Change in Cardiovascular Health) tests the impact of genetic risk disclosure on change in cardiovascular health. 
PROACT 2 (Polygenic Risk Based Detection of Subclinical Coronary Atherosclerosis and Intervention With Statin and Colchicine) tests the impact of single vs dual 
targeting of low-density lipoprotein (LDL) cholesterol lowering and inflammation on plaque progression over 1 year. ASCVD = atherosclerotic cardiovascular disease; 
PROACT = Polygenic Risk Based Detection and Treatment of Subclinical Coronary Atherosclerosis.
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plaque among the first 204 participants who under-
went coronary CTA. These findings provide early 
operational insights to inform future large-scale 
preventive trials.

METHODS

STUDY SETTING AND POPULATION. Participants
were identified from the Mass General Brigham 

(MGB) Biobank, a hospital-based research repository 
of >140,000 consented adults with linked electronic 
health records and genome-wide array-based geno-
typing data. 36 Among 64,092 genotyped individuals, 
we calculated CAD PRS using a commercially avail-
able multiancestry score. 18 Adults 40 to 75 years of 
age, without prior CVD, not on lipid-lowering ther-
apy, and with high CAD PRS were screened for eligi-
bility. A total of 2,495 individuals met all inclusion 
criteria (Supplemental Table 1) and were eligible for 
recruitment. All procedures were approved by the 
MGB Institutional Review Board, and both trials were 
registered at ClinicalTrials.gov (PROACT 1 [Polygenic 
Risk Based Detection of Subclinical Coronary 
Atherosclerosis and Change in Cardiovascular 
Health], NCT05819814; PROACT 2 [Polygenic Risk 
Based Detection of Subclinical Coronary Atheroscle-
rosis and Intervention With Statin and Colchicine], 
NCT05850091).

RECRUITMENT AND CALLBACK WORKFLOW.

Eligible participants (n = 2,495) identified from the 
MGB Biobank are invited in sequential batches of 100 
to 200. Each receives an Institutional Review Board– 
approved invitation letter cosigned by the study 
principal investigator and the biobank director 
(Supplemental Figure 1) that explains the study, 
highlights the voluntary nature of participation, and 
offers 2 options: 1) opt in by contacting the study 
team directly via phone; or 2) opt out using a simple 
mechanism described in the letter (Supplemental 
Figure 1). If there is no response after 2 weeks, par-
ticipants are engaged through a structured omni-
channel outreach strategy that includes phone calls 
(Supplemental Figure 2) at different times of day, an 
email containing a short, prerecorded video from the 
from the principal investigator explaining the study 
(Supplemental Figure 3), and a message via the pa-
tient’s secure online health portal (Patient Gateway) 
(Supplemental Figure 4). Each contact attempt was 
logged and tracked to monitor efficiency and partic-
ipant preferences for communication mode. A 
recruitment waterfall (Figure 2A) and participant 
journey schematic (Figure 2B) summarize the overall 
callback process and attrition at each step, from 

biobank identification through randomization.

Individuals expressing interest were contacted by 
study staff members for a brief eligibility confirma-
tion and then scheduled for a virtual informed-
consent discussion with a study physician. Partici-
pants who consented were subsequently invited for 
an in-person baseline visit and coronary CTA at 
Massachusetts General Hospital.

TRIAL DESIGN AND PROCEDURES. All participants
undergo a standardized baseline evaluation before 
randomization into 1 of 2 parallel clinical trials, 
PROACT 1 and PROACT 2, according to findings on 
coronary CTA (Figure 1B). Both trials share a common 
enrollment pipeline and measurement framework. 
Following informed consent, participants complete a 
remote previsit survey to capture behavioral com-
ponents of the American Heart Association’s Life’s 
Essential 8 (LE8): diet, physical activity, nicotine 
exposure, and sleep. 37 Validated instruments are 
used for each domain, including the Mediterranean 
Eating Pattern for Americans questionnaire for diet, 
weekly minutes of moderate to vigorous activity for 
physical activity, average nightly sleep duration, and 
self-reported tobacco or nicotine exposure. 37,38 

Participants then attend an in-person baseline visit 
at which study staff members verify eligibility, 
collect medical history, and obtain anthropometric 
and hemodynamic measures (height, weight, and 
blood pressure). Blood is drawn for complete blood 
count, lipid panel, basic metabolic panel, liver func-
tion, glycated hemoglobin, high-sensitivity C-reac-
tive protein (hsCRP), and creatine kinase, as well as 
for additional samples for biobanking. Samples are 
stored for measurement of apolipoprotein B, lip-
oprotein(a), interleukin-6, and interleukin-1 beta and 
to support future multiomics analyses. The LE8 
health factor components (body mass index, blood 
pressure, blood glucose, and blood lipids) are derived 
from clinical measures and laboratory results, with a 
total LE8 score computed on a scale ranging from 0 to 
100 (higher scores indicate better cardiovascular 
health). LE8 category cutoffs are defined as low 

(<50), moderate (50-79), and high ($80). 37 A saliva 
sample is obtained for confirmatory CAD PRS in 
Clinical Laboratory Improvement Amendments– 
certified laboratory. Participants also undergo 
resting electrocardiography, which will be inter-
preted for a prespecified substudy of ECG2CAD, an 
artificial intelligence algorithm that leverages ma-
chine learning of electrocardiography to detect sub-
clinical CAD. 39

All participants undergo coronary CTA on dual-
source SOMATOM Force scanners (Siemens 
Healthineers) following Society of Cardiovascular

J A C C V O L . ■ , N O . ■ , 2 0 2 6 Abou-Karam et al
■ , 2 0 2 6 : ■ – ■ PROACT: Polygenic Risk Guided CAD Prevention

5



Computed Tomography guidelines. 40,41 The protocol 
includes a noncontrast calcium scoring scan and a 
contrast-enhanced angiographic acquisition, with 
sublingual or transdermal nitroglycerin

administered for coronary vasodilation. Coronary 
computed tomographic angiographic images are 
analyzed using the Society of Cardiovascular 
Computed Tomography segment model for the

FIGURE 2 Recruitment Funnel and Participant Journey in the PROACT Clinical Trials
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B
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Randomization rate: 15.3%
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(A) Recruitment funnel illustrating participant enrollment from the Mass General Brigham (MGB) Biobank into the PROACT clinical trials. Of 64,092 genotyped 
biobank participants, 2,495 (3.9%) met eligibility criteria on the basis of a high coronary artery disease polygenic risk score. In this report, we present the data on the 
first 1,314 eligible individuals who have been invited to participate, with 283 (21.5%) opting in. Among those who consented, 204 participants (15.5%) underwent 
coronary CTA, and 201 (15.3%) were randomized. Three participants were withdrawn prior to randomization because of severe stenosis, a severe allergic reaction to 
contrast, and initiation of statin therapy outside the study. (B) Flow diagram illustrating the participant journey from the MGB Biobank through randomization in 
PROACT 1 or PROACT 2. Individuals with existing genotyping data underwent eligibility screening, followed by a 2-week opt-out period after receiving an invitation 
letter. Eligible participants were recontacted through an omnichannel outreach strategy consisting of telephone calls, a prerecorded educational video sent via email, 
and Patient Gateway messages. Participants who opted in completed remote informed consent and an initial study visit before coronary CTA. Rates of eligibility, opt-
in, and consent are displayed at each step, along with the proportion of ineligible participants before and after imaging. Participants with any nonobstructive 
coronary plaque on coronary CTA were randomized into PROACT 2, whereas those without plaque were randomized into PROACT 1. Abbreviations as in Figure 1.
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presence, extent, and composition of atherosclerotic 
plaque, classified as calcified, noncalcified, or 
mixed. 40,41 Stenosis severity is graded as no plaque 
(0%), minimal (1%-24%), mild (25%-49%), moderate 
(50%-69%), severe ($50% in the left main coronary 
artery, 70%-99% in other vessels), or total (100% 

occlusion). High-risk plaque features were defined 
as any of the following: positive remodeling 
(remodeling index >1.1), low attenuation (<30 HU), 
napkin-ring sign, or spotty calcification (<3 mm). 40 

The CAC score was quantified using the modified 
Agatston method. Participants with severe stenosis 
are excluded from randomization and referred for 
clinical care.

Following baseline coronary CTA, participants are 
assigned to 1 of 2 parallel randomized clinical trials 
according to the presence or absence of subclinical 
plaque. Participants with no quantifiable coronary 
atherosclerosis continue with PROACT 1 and are 
randomized 1:1 to either: 1) an intervention arm 

receiving their clinical CAD PRS test results through a 
web-based report and a 30-minute genetic coun-
seling session; or 2) a control arm receiving standard 
of care with deferred CAD PRS disclosure until study 
completion at 12 months (Figure 1B). The trial evalu-
ates whether disclosing a high CAD PRS result can 
improve cardiovascular health over 1 year. The pri-
mary outcome is the change in LE8 score from base-
line to 12 months, derived from repeat surveys and 
clinical assessments. 37

Participants with nonobstructive coronary 
atherosclerosis are enrolled in PROACT 2, a double-
blind, 4-arm, randomized controlled trial. Eligible 
participants are randomized in equal proportions to 1 
of 4 daily regimens: 1) placebo; 2) rosuvastatin 20 mg; 
3) colchicine 0.6 mg; or 4) a combination of rosu-
vastatin 20 mg and colchicine 0.6 mg. Randomization 
is conducted using permuted blocks by the Massa-
chusetts General Hospital Clinical Trials Pharmacy, 
which also oversees blinding and dispensing. Follow-
up includes monthly phone calls for safety and 
adherence, an in-person visit at 3 months with labo-
ratory assessments, and 12-month repeat coronary 
CTA and biomarker assessments. The primary 
outcome is the change in total noncalcified plaque 
volume from baseline to 1 year, measured in cubic 
millimeters. Secondary outcomes include a compar-
ison of the change in low attenuation plaque volume, 
total plaque volume, total calcified plaque volume, 
total low attenuation plaque volume, maximal 
luminal stenosis, calcium score, number of high-risk 
features, and fat attenuation index, with additional 
nonimaging endpoints including change in circu-
lating biomarkers (LDL-C, hsCRP, interleukin-6, and

interleukin-1β) and safety endpoints (clinical adverse 
events or significant increase in creatinine or CPK 
requiring study drug discontinuation). 42,43

PROACT aims to enroll 400 participants with high 
CAD PRS (approximately 200 in each of PROACT 1 and 
PROACT 2), reflecting the observed 50% prevalence 
of subclinical plaque at baseline. Sample size as-
sumptions were derived from prior imaging studies, 
providing >90% power for the prespecified primary 
endpoints. 44-46 The Supplemental Appendix 
Expanded Methods details randomization algo-
rithms, visit schedules, safety monitoring proced-
ures, and power calculations.

SUBCLINICAL CORONARY PLAQUE ANALYSIS AND

STATISTICAL METHODS. We analyzed the first 204 
PROACT participants who underwent coronary CTA 
to assess the prevalence of subclinical coronary pla-
que and describe demographic, clinical, and cardio-
vascular characteristics in this group with low clinical 
but high genetic risk. Participants were stratified by 
plaque status (any plaque vs no plaque) to charac-
terize differences in age, sex, cardiometabolic fac-
tors, and laboratory values. We further examined 
cardiovascular health using the American Heart As-
sociation’s LE8 score. LE8 components and total 
scores (ranging from 0 to 100, with higher values 
indicating better cardiovascular health) were 
computed. 37 Between-group comparisons of LE8 
scores were conducted.

This paper is exploratory in nature, and the ana-
lyses are primarily descriptive. Graphical methods 
and summary statistics were used to characterize the 
data. Continuous variables are expressed as mean ± 

SD or as median (Q1-Q3), while categorical variables 
are expressed as frequencies and percentages. 
Depending on the distribution of the data, either the 
2-sample Student’s t-test or the Wilcoxon rank sum 

test was used to compare continuous outcomes be-
tween 2 groups. For within-group comparisons, the 
paired Student’s t-test or the Wilcoxon signed rank 
test was applied, as appropriate. Normality was 
assessed using the Shapiro-Wilk test.

For categorical outcomes, the Pearson chi-square 
test or the Fisher exact test was used, depending on 
expected cell counts. Multivariable logistic regres-
sion was performed to estimate the predicted prob-
ability of plaque across the age spectrum. Subjects 
with missing outcomes were excluded only when 
comparing the variable with missingness between 
groups.

All statistical analyses were conducted using R 
version 4.4.1 (R Foundation for Statistical 
Computing) using the dplyr and gtsummary packages
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for data wrangling and tabulation and ggplot2 and 
cowplot for visualization. All reported P values are 
2-sided, with P values <0.05 considered to indicate 
statistical significance.

RESULTS

GENETIC RISK ENRICHMENT IN CLINICALLY

LOW-RISK ADULTS. Our analysis of genetic and 
clinical data from 64,092 MGB Biobank participants 
illustrates the limitation of the traditional risk 
factor–based models in identifying individuals with 
low clinical but high genetic risk. As expected, 
participants with established CVD on lipid-lowering 
therapy (n = 8,838) were older compared with 
those without CVD (n = 26,015) (65.63 ± 7.25 years 
vs 58.88 ± 9.30 years; P < 0.0001), were

predominantly men (59% vs 47%; P < 0.0001), had 
lower treated LDL-C (81.03 ± 37.44 mg/dL vs 108.27
± 34.77 mg/dL; P < 0.0001), and were more likely to 
have high CAD PRS (27% vs 21%; P < 0.0001). 
Among the primary prevention cohort, there were 
7,991 patients (30.7%) on lipid-lowering therapy. 
Also as expected, participants receiving lipid-
lowering therapy without established CVD 
(n = 7,991) had an overall higher clinical risk profile 
compared with those not on lipid-lowering therapy 
(n = 18,024) (median American Heart Association 
PCE 10-year atherosclerotic CVD [ASCVD] risk 11.45 
[Q1-Q3: 5.77-19.07] vs 3.07 [Q1-Q3: 1.13-7.61]). How-
ever, there was no difference in the prevalence of 
high polygenic risk between the 2 groups (22% vs 
21%; P = 0.08) (Supplemental Table 2).

The 18,024 biobank participants with no estab-
lished CVD and not on lipid-lowering therapy had a 
mean age of 56.14 ± 9.84 years, and 66.18% were 
women. Those included 3,696 participants with high 
CAD PRS and as such “flying under the radar” with 
high genetic risk despite their apparently low clinical 
risk. The PROACT trials aimed to target this popula-
tion of participants in the MGB Biobank. These are 
middle-aged individuals (mean age 56.09 ± 9.62 
years), 67% of whom are women, with mean LDL-C of 
110 ± 31 mg/dL and among whom 1,843 (88.4%) were 
at low or borderline risk according to the PCE 10-year 
risk calculator (Supplemental Table 2).

OPERATIONAL FEASIBILITY AND RECRUITMENT

OUTCOMES. Large biobanks consented for callback 
such as the MGB Biobank provide an exceptional 
opportunity to identify and recruit individuals for 
genetically enriched clinical trials. 47,48 However, the 
feasibility and effectiveness of such an approach in 
CVD prevention have not been fully demonstrated. 

Among 64,092 genotyped MGB Biobank partici-
pants, 2,495 met eligibility criteria (eligibility yield 
3.9%; 95% CI: 3.7%-4.0%) for the PROACT trials 
(Supplemental Table 1). Between November 2023 and 
January 2025, 1,314 eligible individuals were invited 
to participate via an omnichannel callback strategy 
that combines mailed invitations, follow-up phone 
calls, secure emails, Patient Gateway messages, and a 
brief informational video (Figure 2B). Of these, 283 
(21.5%; 95% CI: 19.4%-23.8%) expressed interest in 
participating. As of this writing, among this cohort, 
266 participants (20.2%; 95% CI: 18.2%-22.5%) pro-
vided informed consent and 204 (15.5%; 95% CI: 
13.6%-17.6%) completed comprehensive clinical as-
sessments and coronary CTA, and 201 (15.3%; 95% CI: 
13.4%-17.4%) have been randomized in PROACT1 or 
PROACT2 (Figure 2A).

TABLE 1 Comparison of Candidate Characteristics by Opt-In Status

Opted In 
(n = 283)

Did Not Opt In 
(n = 1,031) P Value

Age, y 55 ± 8 54 ± 9 0.20
Female 188 (66) 665 (65) 0.50
Race 0.20

White 266 (94) 932 (90)
Black 5 (1.8) 24 (2.3)
Asian 9 (3.2) 59 (5.7)
Hispanic 2 (0.7) 4 (0.4)
Other 1 (0.4) 12 (1.2)

Health care engagement 
Insurance type 0.12

Government 39 (14) 189 (18)
Private 243 (86) 840 (81)
None 1 (0.4) 2 (0.2)

Social deprivation index 30 ± 26 32 ± 26 0.50
Specialty clinic frequency 54 ± 63 37 ± 50 <0.001
PCP frequency 2 ± 8 2 ± 9 0.90
Emergency frequency 0 ± 1 0 ± 1 0.13

Clinical measures and comorbidities 
SBP, mm Hg 126 ± 16 125 ± 16 0.50
DBP, mm Hg 76 ± 10 76 ± 10 0.60
Total cholesterol, mg/dL 202 ± 37 199 ± 34 0.60
HDL-C, mg/dL 67 ± 22 64 ± 19 0.30
LDL-C, mg/dL 116 ± 31 114 ± 29 0.70
BMI, kg/m 2 27.1 ± 5.3 27.1 ± 5.2 0.90
Current smoking 2 (0.7) 23 (2.2) 0.10

Study engagement–related variables 
Days since biobank enrollment 3,088 ± 716 3,058 ± 728 0.50
Distance, miles 14.3 ± 12.4 17.5 ± 16.6 <0.001

Values are mean ± SD or n (%). P values are based on Wilcoxon rank sum tests for continuous variables and 
Pearson chi-square or Fisher exact tests for categorical variables, as appropriate. Sample sizes vary slightly 
because of missing data: social deprivation index (n = 1,038), SBP and DBP (n = 1,298), total cholesterol 
(n = 914), HDL-C (n = 905), LDL-C (n = 599), BMI (n = 1,312), and days since biobank enrollment (n = 1,031). 
Distance was calculated as the great-circle (Haversine) distance between each participant’s residential ZIP code 
centroid and central Boston (42.3601 ◦ N, 71.0589 ◦ W).

BMI = body mass index; DBP = diastolic blood pressure; HDL-C = high-density lipoprotein cholesterol; 
LDL-C = low-density lipoprotein cholesterol; PCP = primary care provider; SBP = systolic blood pressure.
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To explore drivers of study engagement, we 
compared the 283 candidates who opted in and had 
complete data with the 1,031 who declined or did not 
respond to understand potential drivers of interest in 
biobank callback studies (Table 1). Clear differences 
emerged in health care engagement and geographic 
proximity to the study site, whereas demographics or 
clinical characteristics were broadly similar between 
groups.

Participants who opted in exhibited higher spe-
cialty clinic use at MGB over the past 3 years (54.20 ± 

62.83 visits vs 37.35 ± 50.04 visits; P < 0.001), and 
lived significantly closer to central Boston (mean 
distance 14.30 ± 12.39 miles vs 17.52 ± 16.60 miles; 
P < 0.001). These variables were the primary factors 
associated with opting in. Geographic patterns 
further supported the association with proximity, 
with spatial mapping (Supplemental Figures 5 and 6) 
demonstrating that opt-in rates were highest in re-
gions closest to central Boston.

In contrast, demographics, clinical risk factors, 
primary care and emergency visit frequency, insur-
ance type, time since biobank enrollment, and social 
deprivation index (a neighborhood-level measure of 
socioeconomic disadvantage) showed no meaningful 
differences between those who opted in and those 
who did not; detailed comparisons are provided in 
Table 1.

SUBCLINICAL CORONARY PLAQUE AMONG PEOPLE 

WITH LOW CLINICAL AND HIGH GENETIC RISK. The
analyses of coronary plaque prevalence and associ-
ated risk factors among enrolled PROACT partici-
pants are exploratory and based on an interim subset 
of the first 204 participants who completed coronary 
CTA. These findings are primarily descriptive; formal 
multivariable modeling will be conducted upon full 
study completion to better assess independent pre-
dictors of plaque and treatment effects.

Among 204 participants who underwent coronary 
CTA, 69% were women, with a mean age of 56.3 ± 8.5 
years (Table 2). Coronary plaque was identified in 102 
(50%), including 1 individual with severe 3-vessel 
CAD who was excluded from randomization and 
referred for coronary artery bypass grafting (Central 
Illustration). Participants with plaque were older 
(59.0 ± 7.7 years vs 53.7 ± 8.4 years; P < 0.001) and 
more likely to be men (n = 48 [47%] vs n = 15 [15%]). 
Race distribution was similar across groups (92% 

White in both groups; P = 0.83).
Subclinical plaque prevalence differed signifi-

cantly by age and sex (Central Illustration). More than 
three-quarters of men (76.2%) and 38.3% of women 
had subclinical plaque. Among participants 40 to 49

years of age, plaque was present in 57% of men 
(n = 8) and 12% (n = 5) of women (Figure 3A). This gap 
narrowed with age: among 50- to 59-year-olds, 81% 

of men (n = 21) and 37% of women (n = 16) had pla-
que; by 60 to 75 years, 83% of men (n = 19) and 57% of 
women (n = 33) had plaque (Figure 3B).

Detailed plaque characteristics for all participants 
(n = 204) are summarized in Table 3. Among partici-
pants with plaque (n = 102), 9 (8.8%) had calcified 
plaque only, 77 (75.5%) had mixed calcified and 
noncalcified plaque, and 16 (15.7%) had noncalcified 
plaque only (Figure 4A). High-risk plaque features 
were present in 28 of these participants (27.5%), most 
commonly positive remodeling (n = 26 [25.5%]) and 
spotty calcification (n = 17 [16.7%]) (Figure 4B). Pla-
que stenosis severity, as defined using the Coronary 
Artery Disease Reporting and Data System 2.0 clas-
sification, revealed that most participants had mini-
mal (n = 77 [75.5%]) or mild (n = 21 [10.3%]) stenosis, 
while 3 (1.5%) had moderate and 1 (0.5%) had severe 
stenosis. Similarly, plaque burden scores were 
distributed as mild (n = 65 [63.7%]), moderate (n = 21 
[20.6%]), severe (n = 13 [12.7%]), and extensive (n = 3 
[2.9%]). Calcium scores among participants with 
plaque were as follows: 17 (16.7%) had CAC scores of

TABLE 2 Participant Demographics and Clinical Characteristics by Coronary 
Plaque Status

Total 
(N = 204)

No Plaque 
(n = 102)

Plaque 
(n = 102)

Demographic characteristics
Age, y 56.3 ± 8.5 53.7 ± 8.4 59.0 ± 7.7
Female 141 (69) 87 (85) 54 (53)
Race 

White 189 (92.6) 95 (93.1) 94 (92.2)
Black 4 (2.0) 2 (2.0) 2 (2.0)
Asian 6 (2.9) 2 (2.0) 4 (3.9)
Hispanic 3 (1.5) 2 (2.0) 1 (1.0)
Other 2 (1.0) 1 (1.0) 1 (1.0)

Clinical measures and comorbidities
SBP, mm Hg 125.62 ± 15.69 123.20 ± 16.91 128.05 ± 14.02
DBP, mm Hg 81.83 ± 9.35 81.22 ± 9.36 82.45 ± 9.35
LDL-C, mg/dL 120.46 ± 29.57 116.58 ± 28.02 124.41 ± 30.71
HDL-C, mg/dL 62.80 ± 18.17 66.09 ± 18.06 59.52 ± 17.76
Triglycerides, mg/dL 131.10 ± 75.42 123.68 ± 73.21 138.52 ± 77.22
BMI, kg/m 2 26.87 ± 4.69 26.24 ± 4.35 27.50 ± 4.96
HbA 1c , % 5.47 ± 0.48 5.42 ± 0.34 5.53 ± 0.59
Non-HDL cholesterol, mg/dL 143.34 ± 34.10 137.46 ± 33.14 149.23 ± 34.19
hsCRP, mg/L 2.50 ± 3.21 2.73 ± 3.63 2.26 ± 2.72

Values are mean ± SD or n (%). Between the “plaque” and “no plaque” groups, comparisons used Student’s t-
test for normally distributed measures and the Wilcoxon rank sum test when distributions departed from 

normality; the Pearson chi-square test was used for categorical variables (the Fisher exact test was applied if 
any cell count was <5). P values refer only to the 2-group comparison (“no plaque” vs “plaque”); the “Total” 
column is shown for descriptive purposes and was not tested. HbA 1c was missing in 17 participants (n = 187 
analyzed).

HbA 1c = hemoglobin A 1c ; hsCRP = high-sensitivity C-reactive protein; other abbreviations as in Table 1.
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0, 58 (56.9%) had CAC scores of 1 to 99, 17 (16.7%) had 
CAC scores of 100 to 299, and 10 (9.8%) had CAC 
scores $300. For participants who had nonzero CAC 
scores and were older than 45 years (n = 83), we 
calculated the MESA (Multi-Ethnic Study of Athero-
sclerosis) adjusted percentiles and found that 36 of 
the 83 (43.4%) had MESA percentiles below 75, 
the guideline-accepted cutoff for statin initiation 
(Supplemental Figure 7). 6 Complete plaque and Cor-
onary Artery Disease Reporting and Data System

distributions for the total cohort (n = 204) are re-
ported in Table 3 and Figure 4.

We also conducted a sensitivity analysis limited 
to the 153 participants classified as “low” or 
“borderline” risk according to the PCE (10-year 
ASCVD risk <7.5%). 49 Even in this group, the prev-
alence of subclinical plaque remained substantial at 
39.9% (95% CI: 32.1%-48.1%). These individuals 
were predominantly women (78%), with a mean 
age of 53.6 ± 7.1 years. Sex-specific plaque

FIGURE 3 Prevalence of Subclinical Coronary Plaque by Age and Sex
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(A) Bar chart showing the prevalence of subclinical coronary plaque among the first 204 PROACT (Polygenic Risk Based Detection and 
Treatment of Subclinical Coronary Atherosclerosis) participants enrolled before January 31, 2025, stratified by sex and age groups (40-49, 
50-59, and 60-75 years). Plaque prevalence was calculated as the percentage of individuals with detected plaque within each stratum, with 
error bars indicating 95% CIs. (B) Predicted probability of coronary plaque by age and sex, on the basis of a logistic regression model 
including an age × sex interaction. Solid lines show a model-estimated prevalence for men (blue) and women (red) across ages 20 to 80 
years; shaded ribbons represent 95% CIs (computed on the logit scale and back-transformed to the probability scale). The x-axis spans from 

20 to $80 years of age, and the y-axis shows predicted plaque prevalence from 0% to 100%. Continuous curves and their uncertainty bands 
allow comparison of how plaque risk evolves with age in each sex.

Abou-Karam et al J A C C V O L . ■ , N O . ■ , 2 0 2 6

PROACT: Polygenic Risk Guided CAD Prevention ■ , 2 0 2 6 : ■ – ■

10



prevalence in this group was 69.7% in men and 
31.7% in women.

CLINICAL RISK FACTORS AND CARDIOVASCULAR 

HEALTH AMONG PARTICIPANTS WITH AND

WITHOUT PLAQUE. Clinical characteristics were 
broadly similar between participants with and 
without plaque. Modestly higher LDL-C (124.4 ± 

30.7 mg/dL vs 116.6 ± 28.0 mg/dL), body mass index 
(27.50 ± 4.96 kg/m 2 vs 26.24 ± 4.35 kg/m 2 ), and sys-
tolic blood pressure (128.05 ± 14.02 mm Hg vs 123.20
± 16.91 mm Hg) were observed among those with 
plaque. Other risk factors such as diastolic blood 
pressure, glycated hemoglobin, non–high-density li-
poprotein cholesterol, and hsCRP were 
similar (Table 3).

The high prevalence of subclinical coronary plaque 
was observed despite favorable overall cardiovascu-
lar health (mean LE8 score 73.3 ± 11.5) (Figure 5A, 
Supplemental Table 3), which is nearly 1 SD higher 
than the U.S. adult average (64.7) and is substantially

higher than international cohorts. 50,51 LE8 distribu-
tion showed that 67 participants (32.8%) had “high,” 
132 (64.7%) had “moderate,” and only 5 (2.5%) had 
“low” cardiovascular health (Figure 5B). LE8 scores 
were lower among those with plaque compared with 
those without plaque, and this was driven primarily 
by less favorable sleep, blood pressure, and body 
mass index subscores (Figure 5).

In this interim analysis of a subset PROACT par-
ticipants selected with high genetic risk but not on 
lipid-lowering therapy, CAD PRS appears to be the 
dominant driver of plaque presence (Central 
Illustration); however, larger sample size at the 
conclusion of the study, along with multivariable 
modeling, is likely to provide better understanding of 
the role of conventional risk factors in this group.

PARTICIPANT VIGNETTES. To contextualize these
findings, 2 representative cases highlight how CAD 
PRS stratification can reveal subclinical disease in

TABLE 3 Comparison of Subclinical Plaque Characteristics by ASCVD Risk Score Categories

All Participants 
(N = 204)

Low (<5%) 
(n = 129)

Borderline 
(5%-<7.5%) 
(n = 24)

Intermediate 
(7.5%-<20%) 

(n = 43)

High 
($20%) 
(n = 8)

Plaque score categories
0 segments with plaque 102 (50.0) 82 (63.6) 10 (41.7) 9 (20.9) 1 (12.5)
1 or 2 segments with plaque 66 (32.4) 37 (28.7) 9 (37.5) 16 (37.2) 4 (50.0)
$3 segments with plaque 36 (17.6) 10 (7.8) 5 (20.8) 18 (41.9) 3 (37.5)
Participants with high-risk plaque features 28 (13.7) 13 (10.1) 3 (12.5) 10 (23.3) 2 (25.0)

Stenosis 
CAD-RADS 0: no plaque or stenosis 102 (50.0) 82 (63.6) 10 (41.7) 9 (20.9) 1 (12.5)
CAD-RADS 1: 1%-24% stenosis 77 (37.7) 39 (30.2) 11 (45.8) 23 (53.5) 4 (50.0)
CAD-RADS 2: 25%-49% stenosis 21 (10.3) 8 (6.2) 3 (12.5) 8 (18.6) 2 (25.0)
CAD-RADS 3: 50%-69% stenosis 3 (1.5) 0 (0.0) 0 (0.0) 3 (7.0) 0 (0.0)
CAD-RADS 4A: 70%-99% stenosis 1 (0.5) 0 (0.0) 0 (0.0) 0 (0.0) 1 (12.5)
CAD-RADS 4B: left main coronary artery

$50% or 3-vessel $70% stenosis 
0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

CAD-RADS 5: 100% occlusion 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
Plaque burden 

P0 102 (50.0) 82 (63.6) 10 (41.7) 9 (20.9) 1 (12.5)
P1: mild 65 (31.9) 36 (27.9) 9 (37.5) 17 (39.5) 3 (37.5)
P2: moderate 21 (10.3) 9 (7.0) 3 (12.5) 8 (18.6) 1 (12.5)
P3: severe 13 (6.4) 2 (1.6) 2 (8.3) 8 (18.6) 1 (12.5)
P4: extensive 3 (1.5) 0 (0.0) 0 (0.0) 1 (2.3) 2 (25.0)

CAC score 
0 119 (58.3) 90 (69.8) 13 (54.2) 14 (32.6) 2 (25.0)
1-99 58 (28.4) 32 (24.8) 6 (25.0) 17 (39.5) 3 (37.5)
100-299 17 (8.3) 5 (3.9) 4 (16.7) 7 (16.3) 1 (12.5)
$300 10 (4.9) 2 (1.6) 1 (4.2) 5 (11.6) 2 (25.0)

Values are n (%). Percentages reflect the proportion of participants within each ASCVD risk stratum. “High-risk plaque features” denote the presence of at least 1 high-risk 
characteristic on coronary computed tomographic angiography. ASCVD risk categories are based on pooled cohort equation 10-year risk: low (<5%), borderline (5%-7.4%), 
intermediate (7.5%-19.9%), and high ($20%). Percentages may not total 100% because of rounding.

ASCVD = atherosclerotic cardiovascular disease; CAC = coronary artery calcium; CAD-RADS = Coronary Artery Disease Reporting and Data System.
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individuals otherwise considered low risk by con-
ventional measures (Figure 6).

Figure 6A depicts a 46-year-old man with a PCE 
10-year ASCVD risk of 2.3% and a CAD PRS in the 
99th percentile, yet coronary CTA revealed a non-
calcified mid left anterior descending coronary artery 
plaque causing mild stenosis despite a CAC score of 
0. Figure 6B shows a 51-year-old woman with a PCE 
risk of 1.2% and CAD PRS in the 82nd percentile. 
Coronary CTA showed mixed plaque in the mid left

anterior descending coronary artery segment, with a 
CAC score of 38.

DISCUSSION

We report interim findings from the first genotype-
first, biobank-enabled clinical trial that leverages 
CAD PRS for proactive cardiovascular prevention. 
This description and analysis of the early findings 
from PROACT offers 3 preliminary insights. First,

FIGURE 4 Distribution and Severity of Coronary Plaque by Age and ASCVD Risk Category
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(A) Stacked bar chart showing the distribution of plaque composition among participants with any detectable plaque (n = 102), stratified by 
age group (40-49, 50-59, and 60-75 years). Bars represent the proportion of participants within each age group with noncalcified, mixed, 
or calcified plaque. (B) Scatterplot of individual participants by atherosclerotic cardiovascular disease (ASCVD) (pooled cohort equations) risk 
category (low, borderline, intermediate, and high) vs Coronary Artery Disease Reporting and Data System (CAD-RADS) stenosis category 
(category 1, 1%-24%; category 2, 25%-49%; category 3, 50%-69%; category 4A, 70%-99% or left main stenosis $50%). Each point 
represents 1 participant. Red points indicate the presence of $1 high-risk plaque feature; gray indicates no high-risk plaque features.
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conventional risk factor–based models miss a sub-
stantial proportion of individuals “flying under the 
radar” who have subclinical plaque. Second, biobank 
participants are receptive to genetic testing and 
identifying subclinical disease. Third, a polygenic 
risk–enriched strategy to detect subclinical coronary 
atherosclerosis can uncover silent CAD in at least 
one-half the population screened despite low clinical

risk and favorable cardiovascular health profile 
(Central Illustration).

Conventional risk factor–based models depend on 
the presence of clinical risk factors that emerge late 
in the disease trajectory. In our biobank analysis of a 
lipid lowering–naive cohort without CAD, 21% met 
the high CAD PRS threshold despite low clinical risk. 
Prior studies have shown that CAD PRS reclassifies

FIGURE 5 Distribution of AHA LE8 Scores by Subclinical Coronary Plaque Status
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(A) Mean American Heart Association (AHA) Life’s Essential 8 (LE8) component and total scores (range: 0-100) are overlaid on a graded 
background, with blue bars showing the no-plaque group and black bars the plaque group. Thick segments mark group means, and thin 
horizontal whiskers show 95% CIs. All estimates are based on 102 individuals per group. The gradient beneath each row provides a visual 
scale from poor (0 = red) to ideal (100 = green) cardiovascular health. Continuous variables are plotted side by side using horizontal dodge 
for direct comparison. Corresponding numerical values and P values are provided in Supplemental Table 2. (B) Stacked bar chart showing 
the distribution of AHA LE8 cardiovascular health categories—low (0-49), moderate (50-79), and high (80-100)—among all participants and 
stratified by plaque status. Bars represent the percentage of individuals in each category, with totals displayed above each bar.
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about 15% of future events out of the “low-risk” 
category and projects the greatest relative and abso-
lute benefit of statin therapy for primary prevention 
in the high PRS groups. 19,23,52 By leveraging a fixed, 
lifelong genetic measure rather than transient clin-
ical biomarkers and middle age clinical risk factors, 
PROACT may identify high-risk individuals while 
disease trajectories are potentially still modifiable. 
One-half of participants had subclinical coronary 
plaque despite risk factor profiles that mostly do not 
support lipid-lowering treatment following current 
guidelines, as well as above the U.S. average profile 
of cardiovascular health.

PROACT also provides proof of concept for the 
feasibility of genotype-first recruitment for clinical 
trials. To our knowledge, this is the first PRS-
enriched clinical trial for a drug trial. PRS enrich-
ment holds a strong promise for prognostic and pre-
dictive enrichment of clinical trials that could 
markedly reduce the cost and timeline of clinical 
development; however, feasibility has never been 
developed. 53 Any PRS-based enrichment strategy for 
clinical trials requires large numbers of individuals 
with available genotyping data who are willing to 
engage in clinical trials. In this study, we illustrate 
the rate of eligibility for a typical PRS-enriched pri-
mary prevention clinical trial from a contemporary 
hospital-based biobank in the United States, which 
was <4% (2,495 of 64,092). Once potentially eligible

individuals are identified, the advantage of biobank-
based enrollment is the ability to enroll participants 
relatively quickly rather than serially and to maxi-
mize enrollment rates once contacted. The omni-
channel approach in PROACT yielded more than 20% 

of people interested in the study, which exceeds 
most published estimates of callback studies from 

biobanks or electronic medical records. 54 Interest 
correlated with previous specialty clinic engagement 
(a marker of health system familiarity) and proximity 
to the imaging site, but not with traditional risk fac-
tors or social deprivation index. These operational 
insights may inform future pragmatic implementa-
tion, for example, exploring whether embedding ge-
netic testing within existing specialty pathways may 
boost uptake. Most important, although the yield of 
eligibility was low, the enrollment rates were high. 
This suggests that a key barrier in future PRS-
enriched trials is likely to be the availability of ge-
notypes on larger numbers of people who are con-
sented for callback.

These interim findings from PROACT also demon-
strate the feasibility and potential clinical utility of a 
2-step approach to cardiovascular prevention that 
consists of biomarker enrichment followed by 
screening for subclinical coronary plaque (Figure 1A). 
This proactive approach is particularly interesting in 
PROACT because of the nature of CAD PRS, which 
despite the potential clinical utility and availability,

FIGURE 6 Subclinical Coronary Plaque in Apparently Low-Risk Individuals

Representative participants with low atherosclerotic cardiovascular disease pooled cohort equation (PCE) scores were found to have cor-
onary plaque on coronary computed tomographic angiography. (A) A 46-year-old man (PCE 2.3%, coronary artery calcium [CAC] score = 0, 
polygenic risk score [PRS] 99th percentile) with noncalcified mid left anterior descending coronary artery (LAD) plaque causing mild stenosis. 
(B) A 51-year-old woman (PCE 1.2%, CAC score = 38, PRS 82nd percentile) with mixed plaque in the mid LAD segment. These cases 
highlight how genotype-first imaging can identify silent atherosclerosis missed by traditional risk models.
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has not yet penetrated practice at scale. Our explor-
atory findings build on prior studies, such as the 
REPRIEVE (Randomized Trial to Prevent Vascular 
Events in HIV) trial, which assessed a large cohort of 
HIV-positive individuals undergoing coronary CTA 
and revealed that 49% had coronary plaque, and the 
Miami Heart Study, which similarly reported 49% 

plaque prevalence in a population already triggering 
clinical concern and often on statins or aspirin. 55-57 

Prior imaging cohorts, including MESA, the Miami 
Heart Study, and REPRIEVE, were generally enrolled 
older, more comorbid, predominantly male, and 
often enriched for individuals already warranting 
clinical evaluation. 55-58 In contrast, PROACT is the 
first trial to prospectively assess subclinical coronary 
plaque in a primary prevention cohort that has low 

clinical risk and favorable cardiovascular health. 
Participants were younger, were predominantly 
women, were not on lipid-lowering therapy, exhibi-
ted favorable cardiovascular health with a mean LE8 
score 1 SD higher than the national average, and had 
clinical risk factors that were mostly within reassur-
ing ranges per guidelines. Yet despite these reassur-
ing profiles, one-half harbored subclinical plaque 
(76.2% of men and 38.3% of women), suggesting that 
many individuals with high CAD PRS remain unde-
tected by conventional risk stratification and are 
effectively “flying under the radar.”

In addition to enrolling symptomatic or higher 
clinical risk participants, most prior studies of coro-
nary imaging relied on CAC scoring, which identifies 
only late-stage calcified plaque and misses non-
calcified plaque. In contrast, coronary CTA captures 
both calcified and lipid-rich noncalcified plaque, the 
hallmark of early atherosclerosis, and enables full 
visualization of plaque and its features in the coro-
nary tree, which prior to this technology relied on 
invasive intravascular imaging. Coronary CTA repre-
sents a promising noninvasive alternative suitable 
for primary prevention, enabling detailed plaque 
phenotyping including plaque volume, plaque 
composition, high-risk plaque features associated 
with vulnerability to rupture, and perivascular fat 
attenuation index, a measure of residual inflammation 
associated with cardiovascular outcomes. 59-66 

Ongoing advances in artificial intelligence–based pla-
que quantification promise automated risk stratifica-
tion and longitudinal monitoring that could further 
streamline precision prevention pipelines. 67-69 

Our interim findings support the potential of a 2-step 
proactive prevention paradigm: first, genotype-
based triage to identify the approximately 20% of 
adults at 3-fold lifetime risk and, second, targeted 
coronary CTA to detect subclinical disease and inform

therapeutic decision-making. This approach may bal-
ance the growing demand for earlier intervention with 
the practical constraints of mass coronary computed 
tomographic angiographic screening.

Although PRS are not diagnostic tools themselves, 
they can play a pivotal role in stratifying individuals 
for preventive screening and targeted interventions. 
Similar to how age and smoking history guide the 
allocation of low-dose computed tomographic scans 
in lung cancer screening programs, PRS can be inte-
grated into risk-based triaging to refine preventive 
strategies and prioritize individuals who may benefit 
from further evaluation. 70 The BARCODE1 trial for 
prostate cancer demonstrated that genome-first 
stratification can detect clinically significant disease 
missed by traditional pathways. 29 Analogous to 
BARCODE1, PROACT illustrates how genomic infor-
mation available from birth can uncover risk not 
captured by current clinical frameworks and can help 
inform proactive, 2-step prevention paradigm: first, 
genotype-based triage to identify high-risk in-
dividuals and, second, targeted coronary CTA to 
detect subclinical disease and guide early therapeutic 
decision-making.

PROACT is approaching enrollment completion of 
400 participants, who will be followed for 1 year. The 
planned readout of PROACT 1 and PROACT 2 is in 
2027. PROACT 1 will answer whether disclosure of 
CAD PRS compared with standard of care results in 
improved cardiovascular health. PROACT 2 will 
determine whether single and dual targeting of LDL-
C (with high-intensity statin) and inflammation (with 
low-dose colchicine) reduce noncalcified plaque 
progression compared with placebo. Analysis of bio-
markers and plaque characteristics will provide 
mechanistic insights on the association of biomarkers 
with plaque and impact of low-dose colchicine and 
statin therapy on plaque among people with high 
polygenic risk. To our knowledge, PROACT 2 consti-
tutes the first PRS-enriched clinical trial of a drug 
therapy, and we hope that upon its completion, it 
will usher in a new era of genomically enriched 
clinical trials and more proactive prevention for CAD.

STUDY LIMITATIONS. First, the findings reflect an 
interim, exploratory analysis of the first 204 partici-
pants, and current associations of plaque with clin-
ical risk factors are not powered for definitive 
inference. Second, participants are enrolled from a 
single U.S.-based hospital biobank and are a pre-
dominantly White and highly engaged population, 
which may limit generalizability.

Third, apolipoprotein B and lipoprotein(a) were 
not routinely measured at baseline; assays are
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planned on stored specimens. Fourth, the genotype-
first callback design may introduce selection bias, as 
participants who engage with specialty care or live 
closer to the imaging center may be more likely to 
participate.

Fifth, quantitative plaque volume and perivascular 
fat attenuation analyses are planned once all imaging 
data are complete. Additional studies are needed to 
confirm similar feasibility and operations in other 
contexts, but we hope that this study provides a 
proof of concept that supports initiating such 
studies.

CONCLUSIONS

This interim analysis from PROACT demonstrates the 
feasibility of implementing a genome-first, biobank-
enabled strategy for primary prevention trials. PRO-
ACT is the first PRS-enriched clinical trial to pro-
spectively evaluate subclinical coronary disease 
using coronary CTA in a clinically low-risk popula-
tion, suggesting that CAD PRS can identify in-
dividuals who would otherwise fly under the radar in 
contemporary practice. These interim findings sup-
port the potential for a 2-step prevention strategy, 
genotype-based triage followed by targeted imaging, 
that may enable earlier intervention. This proof-of-
concept report provides an illustration of how car-
diovascular prevention could be shifted decades 
earlier in the disease course and might help align 
preventive cardiology with the proactive, precision 
approaches already transforming oncology and other 
fields.
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